Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions
نویسندگان
چکیده
The preparation of nanofluids is very important to their thermophysical properties. Nanofluids with the same nanoparticles and base fluids can behave differently due to different nanofluid preparation methods. The agglomerate sizes in nanofluids can significantly impact the thermal conductivity and viscosity of nanofluids and lead to a different heat transfer performance. Ultrasonication is a common way to break up agglomerates and promote dispersion of nanoparticles into base fluids. However, research reports of sonication effects on nanofluid properties are limited in the open literature. In this work, sonication effects on thermal conductivity and viscosity of carbon nanotubes (0.5 wt%) in an ethylene glycol-based nanofluid are investigated. The corresponding effects on the agglomerate sizes and the carbon nanotube lengths are observed. It is found that with an increased sonication time/energy, the thermal conductivity of the nanofluids increases nonlinearly, with the maximum enhancement of 23% at sonication time of 1,355 min. However, the viscosity of nanofluids increases to the maximum at sonication time of 40 min, then decreases, finally approaching the viscosity of the pure base fluid at a sonication time of 1,355 min. It is also observed that the sonication process not only reduces the agglomerate sizes but also decreases the length of carbon nanotubes. Over the current experimental range, the reduction in agglomerate size is more significant than the reduction of the carbon nanotube length. Hence, the maximum thermal conductivity enhancement and minimum viscosity increase are obtained using a lengthy sonication, which may have implications on application.
منابع مشابه
An Improvement in Thermal and Rheological Properties of Water-based Drilling Fluids Using Multiwall Carbon Nanotube (MWCNT)
Designing drilling fluids for drilling in deep gas reservoirs and geothermal wells is a major challenge. Cooling drilling fluids and preparing stable mud with high thermal conductivity are of great concern. Drilling nanofluids, i.e. a low fraction of carbon nanotube (CNT) well dispersed in mud, may enhance the mixture thermal conductivity compared to the base fluids. Thus, they are potentially ...
متن کاملThermal and Rheological Properties Improvement of Oil-based Drilling Fluids Using Multi-walled Carbon Nanotubes (MWCNT)
In this paper, we detail our results for the impact of MWCNT on the thermal and rheological properties of oil-based drilling muds. Our analysis considers the effects of time, temperature, and MWCNT volume fraction. The scanning electron microscopy imaging technique was used to monitor the MWCNTsdispersion quality. The experimental results unveil a considerable enhancement in the thermal conduct...
متن کاملSingle Walled Carbon Nanotube Effects on Mixed Convection heat Transfer in an Enclosure: a LBM Approach
The effects of Single Walled Carbon Nanotube (SWCNT) on mixed convection in a cavity are investigated numerically. The problem is studied for different Richardson numbers (0.1-10), volume fractions of nanotubes (0-1%), and aspect ratio of the cavity (0.5-2.5) when the Grashof number is equal to 103. The volume fraction of added nanotubes to Water as base fluid are lowers than 1% to make dilute ...
متن کاملEffect of multi-walled carbon nanotube on mechanical and rheological properties of silane modified EPDM rubber
A novel mixing approach for achieving a good dispersion of multi-walled carbon nanotubes (MWCNTs) in ethylene- propylene diene monomer (EPDM) matrix has been investigated. In this approach EPDM was modified with vinyltrimethoxysilane (VTMS) during melt mixing. In addition the effect of MWCNT concentration on mechanical and rheological properties of modified EPDM has been studied. The formulated...
متن کاملExamination of effects of multi-walled carbon nanotubes on rheological behavior of engine oil (10W40)
In this study, effects of multi walled carbon nanotubes and temperature on rheological behavior of engine oil (10W40) have been examined. For this purpose, the experiments were carried out in the temperature range of 5-55°C for several suspensions with solid volume fractions of 0.025%, 0.05%, 0.1%, 0.25%, 0.5% and 0.75%. The viscosity of all samples was measured in the shear rate range of 666s-...
متن کامل